

Abstracts

Microwave and Millimeter Wave QWITT Diode Oscillator

V.P. Kesan, A. Mortazawi, D.P. Neikirk and T. Itoh. "Microwave and Millimeter Wave QWITT Diode Oscillator." 1989 MTT-S International Microwave Symposium Digest 89.1 (1989 Vol. I [MWSYM]): 487-490.

We present dc, microwave, and millimeter wave characteristics of different quantum well injection transit time (QWITT) diodes. Small-signal and large-signal device models are used to provide physical device design parameters to maximize output power density. A peak output power of 1 mW in the frequency range of 5-8 GHz has been obtained from a planar QWITT oscillator. This is the highest output power obtained from any quantum well oscillator at any frequency. This result also represents the first planar circuit implementation of a quantum well oscillator. Millimeter wave oscillations at 28-31GHz in a full-height waveguide circuit with an output power of 30 μ W have been obtained. In addition, we present results on improving device efficiency by optimizing the design of the drift region through the use of a doping spike. By optimizing the doping concentration and width of the doping spike, an increase in efficiency from 2% to 5% is obtained, without compromising on output power at X-band.

[Return to main document.](#)